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ABSTRACT
Formaldehyde evolves from various household items and is of environmental and public health
concern. Removal of this contaminant from the indoor air is of utmost importance and currently,
various practices are in the field. Among these practices, indoor plants are of particular importance
because they help in controlling indoor temperature, moisture, and oxygen concentration. Plants
and plant materials studied for the purpose have been reviewed hereunder. The main topics of
the review are, mechanism of phytoremediation, plants and their benefits, plant material in formal-
dehyde remediation, and airtight environmental and health issues. Future research in the field is
also highlighted which will help new researches to plan for the remediation of formaldehyde in
indoor air. The remediation capacity of several plants has been tabulated and compared, which
gives easy access to assess various plants for remediation of the target pollutant. Challenges and
issues in the phytoremediation of formaldehyde are also discussed.

Novelty statement: Phytoremediation is a well-known technique to mitigate various organic and
inorganic pollutants. The technique has been used by various researchers for maintaining indoor
air quality but its efficiency under real-world conditions and human activities is still a question
and is vastly affected relative to laboratory conditions. Several modifications in the field are in pro-
gress, here in this review article we have summarized and highlighted new directions in the field
which could be a better solution to the problem in the future.

GRAPHICAL ABSTRACT
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Introduction

In recent years, the purification of atmospheric pollution
becomes the focal point of scientific research. Humanity is
surrounded by nearly 200 variety of airborne pollutants,
which can seriously damage the respiratory and cardiovascu-
lar systems (Han et al. 2022). The presence of many of these
pollutants is responsible for emergency visits or hospital

admissions and eventually causes mortality (Orellano et al.
2020; Han et al. 2022). The global consideration is that air

pollution (both outdoor and indoor) is a tremendous envir-

onmental health risk resulting in about one in every nine

deaths annually (WHO 2016). As people tend to spend
more than 80% of their time indoors, and as the indoor air

pollutants are often 2–4 times higher than outdoor, people
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are seriously exposed to indoor air pollutants affecting their
health, well-being, and productivity levels in working spaces
(Pettit et al. 2018b; Mannan and Al-Ghamdi 2021a; Teiri
et al. 2022). Among these pollutants formaldehyde (HCHO)
is one of the most notorious pollutants present in the
atmosphere. It is a volatile organic compound; toxic and
chemically sensitive gas emitted from diverse indoor sources,
such as wood-based construction materials, flooring, furni-
ture, decoration elements, and other adhesives and resins
(Wang et al. 2020; Zhang et al. 2020; Han et al. 2022;
Huang et al. 2022), causing eyes and nose irritation and
bodily discomfort. While long-term exposure may cause ner-
vous system disorders and other carcinogenic effects (Zhu
et al. 2019; Lee et al. 2021; Han et al. 2022).

On the other hand, formaldehyde is an economically
essential chemical, endogenously produced in a living organ-
ism (Agathokleous and Calabrese 2021), annually producing
�21 � 106 tones globally (Zhang 2018). It is manufactured
as an aqueous solution known as formalin (which contains
37% of dissolved formaldehyde). It is widely used as an
embalming agent or as a bactericide in medical laboratories
(Bedino 2003). It is also mixed with other compounds to
make casein formaldehyde, phenolic resins, urea formalde-
hyde, and melamine formaldehyde; which are used in the
production of daily life products for domestic and industrial
uses, such as resins, plastics, cups, saucers, lampshades, var-
nishes, laminates, adhesives; knitting needles, buttons,
buckles, electrical automobile insulators, and other heavy
industrial products. It is also widely used in glass and rock
wool insulation, molding compounds, decorative laminate,
and textile treatments (Zhang et al. 2009). Formaldehyde is
emitted indoors from household elements including carpet-
ing, plywood, particleboard, furniture, and items from the
above-mentioned industries (Zhang et al. 2009). Based on
serious health concerns, the safe concentration of this chem-
ical has to be maintained particularly in places expected to
have high concentration. The permissible exposure limit
(PEL) approved by Occupational Safety and Health
Administration (OSHA) is 0.75 ppm (8 h Time-Weight
Average, TWA) and 2 ppm (15min, Short-term Exposure

Limit, STEL). The ACGH has set the Threshold Limit Value
(TLV) to 0.3 ppm and the National Institute of Occupational
Safety and Health (NIOSH) has approved 0.016 ppm (8 h,
TWA) and 0.1 ppm (15min, STEL) (Zhang et al. 2009).

Indoor air pollution may be controlled by eliminating the
source of pollution, optimizing ventilation, and modifying
users’ behaviors (Bandehali et al. 2021). Various systems
have been introduced to remove indoor air pollutants from
air, i.e., filtration, ventilation, isolation, air cleaners, adsorp-
tion, and air stripping ozonation, ultraviolet (UV) photoly-
sis, photocatalytic oxidation, cold plasma or non-thermal
plasma (NTP), membrane separation, etc. (Teiri et al. 2018b;
Yang et al. 2020).

The presence of formaldehyde in surrounding air particu-
larly indoor environments is required to be regularly moni-
tored and regulated. There are various techniques in practice
to cleanup formaldehyde, they can be on a laboratory scale
using porous material (Hu et al. 2020; Tasbihi et al. 2015),
fixed bed scrubber (Talaiekhozani et al. 2016), photocatalytic
degradation (Mamaghani et al. 2018) and decomposition over
nanomaterial (Cui et al. 2019; Luo et al. 2019), etc. These
technologies are efficient but need considerable installation
and replacement cost which make their use limited for an
ordinary person. Phytoremediation is a better alternative in
comparison to these technologies which are affordable for an
ordinary person. Here in this review article, we have collected
a list of plants efficient in formaldehyde remediation under
ordinary conditions. Various phytoremediation strategies have
been critically compared in terms of remediation efficiency,
economic viability, and other demands. Various concepts asso-
ciated with these concepts, strengths, and limitations (of
some) are also discussed.

Recent reviews in the field

Enhanced concentration of various Volatile Organic
Compounds (VOCs) in indoor air is of great public health
concern and has frequently been reviewed (a brief list is pre-
sented in Table 1). Several hot spots have been identified
where there is a need for extra cases and awareness among
the technical staff related to their health and judicious use

Table 1. Some recent reviews published recently, aiming removal of formaldehyde from the ambient air.

S. No. Title of review article Publication year References

1. Plant-based remediation of air pollution: A review 2022 Han et al. 2022
2. Key factors and primary modification methods of activated carbon and their

application in adsorption of carbon-based gases: A review
2022 Wang et al. 2022

3. Volatile organic compounds (Vocs) as environmental pollutants: Occurrence
and mitigation using nanomaterials

2021 David and Niculescu 2021

4. A review on recent advancements in photocatalytic remediation for harmful
inorganic and organic gases

2021 Priya et al. 2021

5. Rational design of catalysts toward energy-saving formaldehyde oxidation:
A review

2021 Chen et al. 2021

6. Autopsy, thanatopraxy, cemeteries and crematoria as hotspots of toxic
organic contaminants in the funeral industry continuum

2021 Gwenzi 2021

7. A review of different phytoremediation methods and critical factors for
purification of common indoor air pollutants: an approach with
sensitive analysis

2021 Teiri et al. 2022

8. Active Botanical Biofiltration in Built Environment to Maintain Indoor Air Quality 2021 Mannan and Al-Ghamdi 2021b
9. Biotechnology progress for removal of indoor gaseous formaldehyde 2020 Shao et al. 2020
10. Effects of indoor plants on air quality: a systematic review 2020 Han and Ruan 2020
11. Review on the effects of plants on indoor environments 2020 Aydogan and Cerone 2021
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of the chemical (Gwenzi 2021). Catalytic deactivation and
catalytic oxidation of formaldehyde by MnOx (Vikrant et al.
2017; Irga et al. 2018; Kim et al. 2018; Pettit et al. 2018b)
material have been described by applying various models,
such as Mars-van-Krevelen, Eley-Rideal, and Langmuir-
Hinshelwood. The removal capacity of the material suffers
from some limitations and its practicality is therefore hin-
dered for remediation of indoor formaldehyde (Zheng et al.
2022). Mitigation of this indoor air pollutant in an energy-
saving manner may be achieved by tailoring the structure,
morphology, and surface of the catalytic material (Chen
et al. 2021). Various strategies for removal of formaldehyde
are in practice where some are associated with secondary
toxic products (Wu et al. 2022). The combination strategy
relying on plants, bacteria, and physical adsorbents in the
removal of formaldehyde is ecofriendly, economic, and safe
(Shao et al. 2020). The activated carbon material is widely
used for adsorption of toxic contaminants including formal-
dehyde based on their several intriguing properties like
improved pore size, enough available surface area for
adsorption, a variety of functional groups, reusability, low
cost, and robust nature. There are some problems associated
with this material, structural and chemical modification is a
source of secondary pollutants, adsorption under humid
conditions is affected and long-term gas removal capacity
are some of the aspects to be addressed (Wang et al. 2022).

Nanomaterials seem to be efficient in the field of catalytic
conversion of VOCs and some large molecules, they are
comparatively new in the field and in most cases, the com-
plex mechanism of decomposition is also unexplored (David
and Niculescu 2021). These materials have several opportu-
nities to play their role in the future, particularly as photo-
catalysts (Priya et al. 2021) and oxidation technologies
(Chen et al. 2021).

The formaldehyde concentration in indoor air is always
less and expensive materials and technology in normally not
affordable. In this scenario, low-cost, efficient, and long-last-
ing technologies and materials are required. In this respect,
plants are a viable and feasible solution to be grown or kept
in side houses. Potted plants and green active walls are
already in use to mitigate some pollutants. Still, some chal-
lenges are there to perform experiments on commercial
bases to evaluate the technology for its cost and affordabil-
ity. The uptake process during summer and winter and the
temperature inside the building can also be a limiting factor
that has to be evaluated in future studies (Han and Ruan
2020; Aydogan and Cerone 2021). It is evident from
Table 1, that in literature potted plants and plant material
for formaldehyde removal from the ambient air have not
been reviewed.

Search and study selection

During searching literature in Scopus, the keywords, formal-
dehyde remediation, formaldehyde phytoremediation, indoor
formaldehyde, and indoor air quality were included. The
search was made limited to a specific period 2015–2022.
Only journal articles were selected for this study and

particularly those containing the keyword in their subject.
The papers featuring quantitative data were critically studied
and data therein were summarized and discussed. Special
attention was paid to those articles that contained reliable
experimental data, some of the papers were excluded during
the study they were either based on theoretical calculations
or the data were poorly presented.

Occurrence and chemistry of formaldehyde in
the atmosphere

Formaldehyde is a colorless gas with a strong smell and is
one of the common chemicals used in various building
materials. Some of the materials where formaldehyde is used
are, wood products processed in industries, paper products,
coating, and insulating material, and as a reagent in the
chemical industry. It is a reactive compound and lasts for a
few hours in the air, it is highly soluble in water. The water
solution of formaldehyde is called formalin which is used as
a preservative in funeral homes, laboratories, as food preser-
vatives (in some cases), as antiseptic, medicines, cosmetic
products, and many more. It is also produced during the
cooking of some foods and smoking in houses. Based on the
toxicity of this chemical it has been declared a human car-
cinogen by the Environmental protection Agency (EPA),
National cancer institute (NCI), International Agency for
Research on Cancer (IARC), and National Toxicology
Program (NTP) (Beane Freeman et al. 2009).

Formaldehyde is an oxidation intermediate of most
VOCs present in the air. Photochemical reactions of long-
lived VOCs at high altitude is also a source of formaldehyde
and the concentration varies with overhead sunlight (Hong
et al. 2022). Photochemical conversion of HCHO into H2

and CO at 324 nm, is reported in the literature.
Formaldehyde readily reacts with OH and NO2 in the tropo-
sphere. The calculated lifetime of formaldehyde for OH rad-
ical reaction is 1.2 d, NO2 is 83 d and ozone is longer than
4.5 years. It means tropospheric OH has a greater influence
on the lifetime of formaldehyde (Atkinson and Arey 2003).
Formaldehyde is an atmospheric trace gas and its concentra-
tion in addition to some chemicals in the air (methane,
methanol, isoprene, formaldehyde, and OH), depends upon
the daylight (Nussbaumer et al. 2021). The production of
formaldehyde from the reaction between OH radical and the
mentioned chemical is almost equal to its loss. Loss of this
chemical is achieved by photolysis and oxidation during
daytime and by deposition during nighttime. If not inhaled,
the concentration of this chemical is naturally kept balanced.
The indoor concentration of formaldehyde is dependent on
various factors, such as the use of various wood products
rich in formaldehyde, paper, and polymeric material. These
materials are sources of indoor formaldehyde which need to
be monitored and controlled in a timely manner, various
sources, degradation/photolysis, and remediation of formal-
dehyde are represented in Figure 1.
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Mechanism of phytoremediation

Plant microorganisms play a pivotal role in the remediation,
they use VOCs as a source of energy or degrade them with
the help of certain enzymes. The remediation or degradation
depends upon the nature of pollutants (hydrophobicity, tox-
icity, and solubility) and certain factors (i.e., type of micro-
organisms, composition of pollutants, and intensity of light).
The uptake of formaldehyde by selected plant species in a
specific experiment was more under dark conditions in
comparison to light (Aydogan and Montoya 2011). Root
and aerial zones of plants have different efficiency in
remediation of formaldehyde and other VOCs, rhizosphere
degradation of these pollutants is the prominent rout in the
plant system (Soreanu et al. 2013). Some of the plant species
are reported to absorb formaldehyde from the air, part of it
is translocated to the rhizosphere, and part is volatilized.
Plant leaves adapt naturally to become more efficient in
absorption and showed higher absorption capacity in com-
parison to young leaves (Su and Liang 2015). Photosynthesis
is a well-known process in which plants take up CO2 and
produce O2 thus improving indoor air quality if present
inside the building. Plants also enhance humidity inside the
building through the process of transpiration. Plants absorb
gaseous pollutants, bioaerosols, and particulate matter are
absorbed on the surface of leaves or absorbed by stomata
and are accumulated in the internal structure of the plant
(Lee 2013).

Phytoremediation of VOCs and its types

Phytoremediation is an effective, eco-friendly and cost-
effective, and sustainable method to improve Indoor Air
Quality (IAQ) and decrease air pollution and heavy metal
concentration in soil segments (Ali et al. 2013). Absorption
and degradation of atmospheric pollutants are the main
processes during phytoremediation which depends on the

metabolic activities of plants (Lee et al. 2021; Han et al.
2022). Indoor plants are mainly herbs and small shrubs and
the adsorption ability of pollutants can be measured via air-
tight experimental containers. On the other hand, outdoor
plants are mainly trees or big shrubs and their purification
impact can be directly evaluated by the adsorption ability of
their foliar surfaces and roots (Han et al. 2022).

Phytoremediation is divided into passive and active biofil-
tration systems. The passive system is defined as a plant-soil
system where the plant is grown in different pots and
watered regularly as needed (potted plant) or vertically
planted in hanging lightweight pots with growing media
(green wall and vertical garden). This system is slow in puri-
fying low concentrations of indoor air pollutants because it
relies on the diffusion of the gaseous indoor pollutants
(Gonz�alez-Mart�ın et al. 2021; Mannan and Al-Ghamdi
2021b, p. 672102; Han et al. 2022; Teiri et al. 2022). Due to
the limitation of the passive phytoremediation system, recent
researches are focused on creating an active green wall-based
system (vertical hydroponic system). Which integrates the
use of mechanical devices (low power fans—active fan-
assisted hydroponic technology) to create an airflow of the
polluted indoor air forcing it to flow toward the whole plant
getting intimately in contact with its aerial (leaves and
stems) and rhizosphere parts (roots and microorganisms).
Thus, phytoremediation will be significantly higher (Pettit
et al. 2018b; Moya et al. 2019; Bandehali et al. 2021;
Gonz�alez-Mart�ın et al. 2021; Teiri et al. 2022). Another rea-
son for maximizing phytoremediation is the plant’s high
density as a large number of plants grown compared to the
limited floor area being utilized (vertical alignment) with
the aid of mechanical ventilation (Pettit et al. 2018b). In the
active system, the air is actively forced through the aerial
plant and rhizosphere microorganisms, while passive system
plant and microorganisms act as a sink for air pollutants
that produce clean air by capturing pollutants or converting
them into less toxic molecules (Soreanu et al. 2013).

Figure 1. Common in-/outdoor sources of formaldehyde and its remediation/decomposition.
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There are various terminologies referred to as phytoremedia-
tion, such as active botanical biofiltration (ABB), botanical
indoor air biofilters (BIAB) (Ibrahim et al. 2018; Pettit et al.
2018b), active living wall (ALW), active green wall (Pettit
et al. 2018b, 2019; Mannan and Al-Ghamdi 2021c), and
Plant-assisted bio-trickling filter (PBTF) (Soreanu et al.
2013), summarized in Figure 2. These remediation techni-
ques are briefly explained under.

Potted plants (PP)
The PPs has been a focus of researcher for the purification
of indoor air from organic pollutants (Irga et al. 2018; Kim
et al. 2018). They are passive removers of pollutants from
the air and have a much slower rate than other techniques/
systems. They can be used for relatively less polluted air,
their efficiency and decontaminating efficiency cannot be
controlled. Still, PPs play their role in controlling air pollu-
tion and some plants have been found very proficient in
eliminating VOCs, such as formaldehyde (Xu et al. 2011;
Teiri et al. 2018a), toluene (Kim et al. 2011), benzene, ethyl-
benzene, xylene (Sriprapat and Thiravetyan 2013), and inor-
ganic gaseous pollutants like CO2 (Torpy et al. 2017) and
ammonia (Ortakci et al. 2019), etc. They suffer from certain
limitations in addition to the abovementioned, i.e., they
need soil which is not least desired in some houses and their
maintenance is somehow a challenge.

A more efficient and controlled system is a plant-assisted
bio-trickling filtration active system, which is discussed below.

Active botanical biofiltration (ABB)
Limitations of potted plants were seriously taken, and the
research was directed to wall-based air purification. The air
was brought in contact with microorganisms present in the
rhizosphere of plants and air flow was created through cer-
tain mechanical devices for enhanced phytoremediation. This
system is called ABB or BIAB (Mannan and Al-Ghamdi
2021b). This system has been studied for its efficiency under

various conditions, such as plant type, temperature, rate of
air flow, temperature, nutrition, and type of light however,
its applicability in a realistic indoor environment is still
poorly understood. Multiple factors influence the efficiency
of the ABB, such as quantity and types of plants, type of
growing media, temperature, lighting intensity, and plant
nutrition (Mannan and Al-Ghamdi 2021b, p. 672102).

Green walls/living walls/vertical gardens (GW, LW, VG)
They are also called living walls or vertical gardens, structur-
ally can be wall-climbing or hanging. As described by
Samaneh et al. Green Walls are pre-vegetated planted covers
or frame upright modules installed on a wall or attached to
other structures (Bandehali et al. 2021). These vegetated flat
walls are square or rectangular in shape, fixed either indoor
or outdoor, and partly or entirely covered with plants. They
contain directly growing media and are usually made up of
lightweight material. The green wall system cleans up indoor
air and also acts as a thermal regulator. They are further
divided into two types, passive and active green walls.
Active green walls have received significant research atten-
tion for improving indoor and outdoor air quality. These
systems have been tested in an indoor environment for the
mitigation of CO2 and have effectively been used in the
reduction of roadside pollutants (Dominici et al. 2021; Pettit
et al. 2021). Active green walls allow air free of particulate
matter (PM), CO, CO2, and most VOCs into the indoor
space. Active walls with hydroponic plants are efficient in
gaseous air pollutants removal at a high air flow rate
(Wolverton 2012). Passive living walls are economically
viable and simple in structure but less efficient in pollutants
removal. Some authors also classify green walls based on
types of plants, growing media, and structure of the wall.

Plant-assisted bio-trickling filtration
This technology was developed in Canada and is currently
being commercialized for the removal of VOCs from the

Figure 2. Passive and active modes of phytoremediation of organic volatile pollutants.
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air. Bio-trickling filters are equipped with packing material
for root support and hydroponic plants. They make an
active biofiltration system and are continuously fed with
contaminated air, trickled with nutrient solution. During
this process uptake and degradation of pollutants take place
leading to pollutant-free air which is allowed into the build-
ing. This system is superior in terms of using no soil and
avoiding maintenance difficulties as in the case of potted
plants. This system is more suited for improving indoor air
quality and is efficient in terms of enhanced gas exchange
and higher pollutants removal performance (Soreanu et al.
2013). This technology is supported by theoretical models
for the removal of hydrophilic VOCs (ethanol, ethyl acetate,
and 1-ethoxy-2-propanol) (San-Valero et al. 2015) and
ammonia (Melse et al. 2012), etc. The system supports the
biodegradation of highly lipophilic compounds due to the
higher bioavailability of more hydrophilic intermediates.
Benzaldehyde, the transformation product of styrene, is
highly water soluble and can be degraded efficiently by this
technology (Dobslaw et al. 2017).

Benefits of phytoremediation
Phytoremediation is counted as one of the promising depol-
lution technologies with the benefit of high efficiency, cost-
effectiveness, effortless operation, and the avoidance of
forming secondary pollution (Yang et al. 2020). On the
other hand, elevating the ventilation rate indoors to dilute
the indoor air pollutants is often complex and cost-effective.
Thus, phytoremediation becomes a significant alternative
because of its vast benefits to the environmental, social, and
economic sectors with its potential contribution to zero
emissions (Teiri et al. 2022). In addition, it can reduce the
dependency on costly and energy-consuming mechanical
ventilation and the installation of filters to purify indoor air
and improve indoor air quality (IAQ) (Teiri et al. 2018a,
2018b; Han et al. 2022). Green systems inside an indoor
environment have many benefits that have positive effects
on the space users as their satisfaction, comfort, and happi-
ness levels increase (Moya et al. 2019). Plants reduce the
indoor temperature and act as passive acoustic insulation by
reducing levels of indoor sound. Surprisingly, the active sys-
tem has several other benefits, such as minimizing indoor
temperature, enhancing relative humidity, and enhancing
sound insulation (Moya et al. 2019; Gonz�alez-Mart�ın et al.
2021). Quantitatively, a decrease in temperature by 1 �C, an
increase in humidity by about 9–13%, and save 20% of fresh
air instead of outdoor air (Wang and Zhang 2011). An add-
itional benefit is to reduce the indoor temperature, which
reduces the energy needed for cooling the indoor environ-
ment, additionally, it adds esthetic benefits for the space
users. Added to this, the environmental, economic, and
social benefits of this system are worth mentioning (Ghazalli
et al. 2018; Gonz�alez-Mart�ın et al. 2021; Mannan and Al-
Ghamdi 2021c). As a result, during plants’ natural life cycle
and growing habits, it can purify atmospheric pollutants,
such as hazardous compounds (organic compounds and
metals), greenhouse gases, etc. (Han et al. 2022). Additional
benefits of growing plants decrease airborne pollutants,

reducing soil and sand deterioration, initiating windbreaks,
capturing air microbes, and cleaning up indoor spaces con-
taminated with formaldehyde, benzene, and other volatile
contaminants (Han et al. 2022). Indoor plants decrease
physical tiredness, improve mental health, positively change
the health status of space users specifically asthmatic
patients, and reduce the level of indoor volatile organic
compounds (VOCs) (Kim et al. 2014). Ornamental indoor
plants are capable of minimizing energy consumption and
can emerge in the recent trend of sustainable green build-
ings (Soreanu et al. 2013).

How do plants absorb formaldehyde?
Readers are referred to a detailed study on the plant-
microbe association in mitigating formaldehyde from the air
(Weyens et al. 2015). Many researches showed that formal-
dehyde is absorbed by plants not only through stomata and
cuticles of leaves but also by the root system and soil micro-
organisms. Formaldehyde is degraded, detoxified, or seques-
trated by promoting plant growth (Weyens et al. 2015; Teiri
et al. 2018a). Stomata on plant leaves are responsible for the
absorption of the air pollutants and purifying HCHO via
conversion into non-toxic substances and discharging it
either by the root system or by concentrating it inside the
branches. While enzymes in the plant metabolism are
responsible for the decomposition and degradation of mul-
tiple air pollutants (Rachmadiarti et al. 2019; Wang et al.
2020; Han et al. 2022). Studies confirmed that the growing
media not only supports the plant by holding the roots but
also simplifies the primary pollutant removal process. Using
different growing media resulted in different removal rates
and adding activated carbon may significantly increase the
purification rates of gaseous pollutants (Pettit et al. 2018a).
In the plant leaves, the absorbed formaldehyde is converted
into carbon dioxide (via oxidization) or other combinations
inside the plant body, for example, organic acids, amino
acids, sugars, and water in the Calvin cycle (Teiri
et al. 2018b).

HCHO metabolism in plant
In an absorption experiment utilizing Chlorophytum como-
sum, 14C was used to label formaldehyde, results revealed
the presence of HCHO in the cell tissue of the plant. This
experiment emphasizes the C present in the molecule of for-
maldehyde. The comosum’s ability in converting formalde-
hyde into organic acids, amino acids, and sugars by the
metabolic reaction was explored. Thus, it is evidenced that
plants can purify pollutants via self-metabolism (Schmitz
et al. 2000). The aerial part of the plant and the root zone
both compete in adsorbing formaldehyde while the rhizo-
sphere plays an essential role in VOCs degradation
(Bandehali et al. 2021; Lee et al. 2021). Potted plants can
remove formaldehyde from air as it dehydrogenases in plant
tissue with the help of the microorganisms in the roots and
substrate to enhance the removal ability. Enzymes in plants
are responsible for purifying formaldehyde from polluted air
(Zhao et al. 2019).
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Inside the plant, formaldehyde is enzymatically trans-
formed by particular dehydrogenases to either formic acid
and eventually to CO2 and H2O or into amino acids, sugars,
CO2, H2O, and biomass (Soreanu et al. 2013) (see Figure 1).

HCHO damage to indoor plants
Plants can survive breathing ambient air polluted with for-
maldehyde. Nevertheless, when exposed to enormous
amounts of HCHO for a lengthy period, it will be negatively
impacted by turning yellow, getting flaccid and loosen,
growing slowly, and eventually dying (Su et al. 2019). Two
formaldehyde fumigation studies showed that exposing
N. obliterate potted plant up to 11mg/m3, and exposing C.
elegans, another potted plant up to 16mg/m3 could not stop
the growing nature of the plant due to the high resistance of
the plant and high tolerance toward HCHO (Teiri et al.
2018a, 2018b). In this study, 30 indoor potted plants from
three distinct species were exposed to air contaminated with
15mg/m3 of formaldehyde for 7 days for testing their
HCHO removal ability inside a sealed glass box (1 � 1 �
0.8m). After 7 days, the plants were classified into five
grades (0–4) according to the damage response caused by
formaldehyde. Grade 0 was normal with no damage and
grade 4 with deterioration in the stem region and half of the
leaves were rotten or dried (Zhou et al. 2011).

The results listed the best 10 plants having high purifica-
tion ability toward formaldehyde with the least damage
(Zhou et al. 2011). In another study, the morphological
response of the plant toward formaldehyde by testing 15
hydroponic plant species in an automatic fumigation cham-
ber was studied. Plants were exposed to 10, 50, and 100mg/
m3 formaldehyde for 1 h a day, for 6 days. Symptoms of
plant damage were classified into four groups. Plant with-
ered, leaf tips withered, Foliar injury and leaf withered but
stem upright. These results listed the best five tolerating and
performing plants that came out to be: S. floribundum, A.
cucullata, D. bullata, S. podophyllum, and S. octophylla
(Wang et al. 2020).

Summary of formaldehyde phytoremediation studies

Summarized information for selected plant species is given
in Table 2 below. The National Aeronautics and Space
Administration (NASA) research in the 1980s was the first
in studying the efficiency of plant-based remediation for
purifying indoor polluted air and improving IAQ
(Wolverton et al. 1984; Moya et al. 2019; Lee et al. 2021).
Since Wolverton’s studies, diverse ornamental potted plants
have attracted researchers’ attention to be nominated for air-
tight experiments to test formaldehyde and other gaseous
pollutants removal rate and purification capacity. Indoor
ornamental potted C. elegans plant (plant-soil system) was
chosen to measure the removal capacity of formaldehyde in
an air-tight Plexiglas chamber using a fumigation method at
various HCHO concentrations (0.66–11.7mg/m3). As a
result, the plant effectively removed 65–100% of formalde-
hyde vapors from polluted air in the experiment during Ta
bl
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long time exposure (Teiri et al. 2018a). Same experimental
procedures were conducted on N. obliterata indoor potted
plant which effectively removed 90–100% of formaldehyde
vapors from the contaminated air in the sealed chamber at a
concentration (0.63–9.73mg/m3) (Teiri et al. 2018b). The
studies in sealed chamber reveal that the plant exhibit excel-
lent efficiency and can be useful in cleaning indoor new or
renovated spaces from formaldehyde. Another crop of three
indoor ornamental plants was investigated using the fumiga-
tion method to evaluate their ability to clean off indoor for-
maldehyde. During 24 h exposure, the formaldehyde level
was decreased from 1.65 to 1.22mg/m3. The results revealed
that C. comosum (0.63mg/m3) and A. Americana (0.62mg/
m3) had more superior power to eliminate HCHO than
A. modestum (0.13mg/m3) (Zhao et al. 2010). The results of
a formaldehyde fumigation experiment (in sealed stainless
steel, and glass chamber, 1m3) involving two indoor potted
plants Epipremnum aureum and R. japonica showed that
stems and leaves as main aerial parts could both effectively
purify formaldehyde present in the air. The stem’s purifica-
tion rate of formaldehyde was 40% and 61.6%, respectively.
While, the leaves’ purification rate was 74.4% and 71.8%,
respectively (Zuo et al. 2022).

Five indoor potted plants were chosen to analyze their
formaldehyde adsorption capability using the airtight fumi-
gation and steaming method. The results revealed that the
decrease in formaldehyde concentration was 0.33mg/m3

after 12 h exposure to 37% formaldehyde solution. The order
of the plants according to their effectiveness in purifying
formaldehyde was observed to S. trifascita (1.90mg/m3),
E. aureum (1.87mg/m3), C. comosum (1.78mg/m3), F. elastic
(1.27mg/m3), Aloe vera (0.64mg/m3) (Xiong and Su 2009).
Following the same experimental procedure 3 plants were
tested in airtight bins for efficiency against the same pollu-
tant. Leaves and root-basin soil were sealed, after 12 h
exposure to 40% formaldehyde solution, the leaves’ absorp-
tion capability was found in the order: S. kochii > C.
makoyana > E. eureum. While the roots-basin soil adsorp-
tion capacity was found in a different order C. makoyana >
S. kochii > E. eureum (Lan 2010). The leaves were the dom-
inant part in absorbing formaldehyde among the three
tested plants, while S. kochii presented the highest 12 h
HCHO adsorption capacity (the mass of absorbed formalde-
hyde per leaf area per hour) at 0.086mg/m2/h The tolerance
level of a plant is a direct measure of formaldehyde remedi-
ation from the ambient air. If a plant has a more powerful
tolerance to formaldehyde, it will have a powerful ability to
purify formaldehyde pollution (Han et al. 2022). In fact, the
chlorophyll amount inside plants is directly influenced
(degraded) by air pollutants. It has also been proved that
chlorophyll degradation in plants could be used to calculate
roughly its anti-pollution capability (Rabe and Kreeb 1979).
The result of the formaldehyde press experiment on three
potted indoor plants in relation to their chlorophyll contents
revealed that the plants performed in order of C. comosum
> A. modestum > A. American (Zhao et al. 2010). In
another enclosed experiment against formaldehyde contents,
13 indoor decorative plants were able to decrease the

concentration of formaldehyde ranging from 46.7 to 92.8%
during 24 h exposure. The plant with optimum adsorbing
capability per unit leaf area was S. podophyllum (3.32mg/
m2), while the poor performance was shown by A. vera
(0.19mg/m2). Taking the efficiency of a plant based on leaf
area, a group of 13 indoor ornamental plants was considered
for the same function. The compiled results revealed that E.
aureum had the most HCHO purification and similarly
Asplenium. nidus had the most HCHO adsorption capability
per unit leaf area (Han and Ruan 2020). The most efficient
plants in formaldehyde remediation are summarized in
Table 2.

The current study of E. aureum and Rohdea japonica
with 41 and 61% formaldehyde removal was conducted and
the enhanced efficiency of plant species was linked to the
increased concentration of CO2 during the experiment in a
sealed environment. An increase in the concentration of
CO2 after efficient uptake of formaldehyde by the plant indi-
cates its phytodegradation capability against HCHO. Roots
and leaves of plants were found to be active in remediation
while the role of the stem is still unclear (Zuo et al. 2022).
The plant, Spathiphallum wallissii was tested in a 1m3 static
glass chamber for its capacity in removing indoor HCHO
(Ghate 2020). Readings were collected twice at the beginning
of the experiment and after 24 h. Results showed that S.
wallissii can remediate HCHO to improve IAQ as the
HCHO level was reduced from 40,998 to 0 ppm. Another
study was aimed to study formaldehyde removal using three
hydroponic plants T. zebrine, A. vera, and V. radiate with
the addition of cultured microorganisms to the rhizosphere
(Yang et al. 2020). The experiment was conducted in a
laboratory using a clear glass container (50 � 30 � 35 cm)
for 24 h. The results showed that using a plant with a micro-
bial system, formaldehyde removal was increased by
6.7–90.5%. The A. vera has the lowest removal capacity
18.8 ± 0.21 mg h�1 g�1 without microbes vs. 23.1 ± 4.2 mg h�1

g�1 in the presence of microbes. While T. zebrine and V.
radiate showed more removal capacity of 59.3 ± 0.2 vs.
86.4 ± 0.7 and 25.1 ± 4.2 vs. 97.6 ± 0.9 mg h�1 g�1, respect-
ively. Cooperativity studies of plants and microorganisms
indicate that degradation >90% can be achieved efficiently.
Among six selected plants, two L. esculentum and H. annuus
were very efficient in the removal of formaldehyde (Zhao
et al. 2019). Such studies clarify a new direction in the field
to get information about cooperation between plants and
microorganisms in rhizosphere solutions (microbe-plant sys-
tem). The same strategy (Bacillus cereus ERBP-Clitoria terna-
tea and Zamioculcas zamiifolia) has also been proved to
have better efficiency toward seed germination under for-
maldehyde stress with increased gaseous formaldehyde
removal (Khaksar et al. 2016a, 2016b).

Plant material and other strategies to control indoor air
formaldehyde

Besides potted plants, dead plant materials are also active in
the field of formaldehyde remediation. There are several
studies addressing the issue in a wonderful way. These
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studies are somehow reliable and efficient as compared to
the natural plants in terms of remediation. The material can
be designed/modified in the lab, structural and surface stud-
ies are carried out with the help of several modern techni-
ques and material can be fabricated in a suitable shape to
cope with removal efficiency. A composite of MnOx/natural
loofah was prepared via in-situ reduction under ambient
conditions. The MnOx nanoparticles were loaded on the
fibrous structure, which efficiently exhibited catalytic
decomposition and adsorption of formaldehyde at room
temperature. The study further indicated that the final
decomposition product was CO2. The material is effective in
the removal of the target contaminants up to 97.5% under
ordinary conditions, in a relatively short time, and in a cost-
effective way (Feng et al. 2020).

To reduce VOCs and other indoor air pollutants levels
below the threshold limit, several methods have been
adopted, such as source prevention (formation emission)
and ventilation (dilution) by replacing polluted indoor air
with fresh outdoor air, which is not sustainable because of
the cost related to filtered and conditioned air. Other meth-
ods involve technologies, such as filtration, adsorption,
photocatalytic oxidation, plasma technology, and UV pho-
tolysis (Luengas et al. 2015; Gonz�alez-Mart�ın et al. 2021;
Masi et al. 2022). Despite the fact, that recent diverse meth-
ods available for removing HCHO from indoor air (photo-
catalytic oxidation, activated carbon, fibers adsorption,
biological methods, and biofiltration), no one of the previ-
ous methods is 100% efficient because of low concentrations
and the volatile characteristics of this pollutant (Teiri et al.
2018b). Nanotechnology as an evergreen technology is at the
forefront to remediate VOCs and other pollutants from the
air, water, soil, etc. This technology is prominent always in
the aspect of its multidimensionality, a recent study estab-
lished a composite nanofiber membrane (ZIF-8@SiO2) that
showed a combined effect, high dust, and formaldehyde
removal efficiency (Zhu et al. 2019; Masi et al. 2022).
Hereunder, the discussion will be confined to plant material
as a component of nanocomposites in fighting formaldehyde
pollution in the air.

Airtight interior environment issues and health issues
Airtight and insulated buildings globally are results of the
energy-saving strategy that was introduced during the
energy crisis in the 1970s. It was aimed at saving more
energy by reducing the fresh air rate indoors. However, this
strategy accumulates more indoor air pollutants with the
improved lifestyle, using more chemical and synthetic mate-
rials for indoor finishing and decorating materials, using
cleaning products, air fresheners, and other appliances
(Mannan and Al-Ghamdi 2021a). Reduce fresh air exchange
and well-insulated (sealed) are claimed to be widely applied
design strategies to improve energy efficiency. Moreover, the
emerging status of airtight building design, which is increas-
ingly applied in diverse buildings, such as homes, schools,
hospitals, and offices to meet high rates of energy efficiency
(Gonz�alez-Mart�ın et al. 2021) resulted in insufficient fresh
air to be introduced to the space users. Thus, the indoor air

becomes stagnant while odors and pollutants accumulate
and deteriorate the indoor air quality causing the sick build-
ing syndromes (SBS) (Suhaimi et al. 2016; Teiri et al. 2022).
The relationship between environmental conservation,
energy conservation, and human health is an overly complex
phenomenon (Suhaimi et al. 2016). In airtight buildings,
that indoor air pollutants concentrations are greatly higher
than outdoors due to limited air exchange of indoor and
outdoor air (low ventilation rate) (Zhang et al. 2020;
Gonz�alez-Mart�ın et al. 2021). This is always accompanied by
several health complications in space users, such as asthma,
nausea, eye irritation, headache, cough, lung cancer, etc.
(Mannan and Al-Ghamdi 2021b). Nasopharyngeal cancer
and leukemia are considered symptoms or health impacts of
elevated levels of exposure to formaldehyde (Yang et al.
2020). While chronic exposure to HCHO by inhalation is
connected with eyes, nose, and throat irritation, sinus infec-
tions, and respiratory problems (Zhang et al. 2009).

Future advances and research

The issue of volatile contaminants is strongly expected to
exponentially increase with future technological advances.
To keep the environment clean, plant materials with the effi-
ciency of simultaneous remediation of more than one con-
taminant are highly needed. Some of the research work
done in the field is recently reviewed, and the association
between plants and microorganisms seems to improve the
remediation of air pollutants in a synergistic way
(Gunasinghe et al. 2021; Supreeth 2022). There are some
researches that have already addressed these challenges, such
as the application of exogenous indole-3-acetic acid on
shoots of Z. zamiifolia for enhancing toluene and formalde-
hyde removal (Ullah et al. 2020). This line of research is still
unexplored and needs further exploration to come up with
an optimum solution. Plants accommodate several bacterial
strains which help in the degradation and absorption of pol-
lutants present in the air (Wei et al. 2017). Plant-microbial
cooperation toward formaldehyde remediation is promising
and is expected to be continued with exciting results.
Moreover, remediation of formaldehyde in highly polluted
air plants have some limitations and must be used in com-
bination with other available techniques/material. The field
of phytoremediation is scientifically unexplored, in the
future a combined application of advanced “omics” technol-
ogies (genomics, proteomics, and metabolomics) is needed
in the field. Plant omics profiling will allow to quantify and
characterize the pool of molecules. The exact understanding
of major metabolic pathways, genes, and enzymes involved
in the remediation process will enable to screen plant spe-
cies to improve indoor air quality. Such studies can also
explore the selectivity of plant species against specific pollu-
tants. Hopes are associated with precise and targeted DNA
modification for inserting genes encoding detoxification
enzymes for better efficiency (Brilli et al. 2018). Moreover,
non-stomatal adsorption followed by removal of VOCs by
rhizosphere and/or phyllosphere microorganisms needs in-
depth study to be explored (Figure 3).
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Conclusion and recommendations

Plant materials are continually active in the remediation of
various pollutants present in ambient air ranging from vola-
tile organics to particulate matters. At the domestic level,
there are several plants that can effectively clean the ambient
air for space users. For huge buildings, either the plant
population has to be increased which is not feasible some-
times, or to use phytoremediation in combination with other
techniques. Plants are a natural material, and their growth
and efficiency cannot be controlled easily, the efficiency of
potted plants has been tremendously enhanced by green
walls where the intensity of plants is increased in combin-
ation with some mechanical operations. The selectivity and
efficiency of plants are required to be determined because
volatile pollutants are not uniform everywhere. Plants with
the efficiency of simultaneous remediation of more than one
compound are the focus of future research and are expected
to come up with interesting results. It is further recom-
mended that the research may be promoted in all regions
throughout the globe on native plants because the natural
habitat for plants varies with altitude and other environmen-
tal conditions. It is also expected that the same plant can
show different remediation efficiency toward a contaminant.

Among the so far tested plants, Hedera helix, Dracaena
compacta, Sansevieria trifasciata, E. aureum, C. comosum, N.
obliterata, C. morifolium, A. vera, and C. elegans have shown
remediation efficacy in the range above 80% and they are
regarded top candidates in formaldehyde remediation tools.
The research will still continue in search of increasingly effi-
cient, pollutant-resistant plants with economic viability and
availability under prevailing.
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